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UTILIZING THE TKREE MOMENT EQUATIONS OF MOTION
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SUMMARY

Based on linearized equations of motion utilizing only the three

moment equations and assuming only flat-spin conditions, it appears that

contemporary designs (with the moment of inertia about the wing axis Iy
%

considerably greater than the moment of inertia about the fuselage axis

IX)_ having positive values of C_p (rolling-moment coefficient due to

rolling) or positive values of (rolling-moment coefficient due to

sideslip) will probably not have a stable spin in the flat-spin region

near an angle of attack of 90 °. If the damping in pitch In flat-spin

attitudes is zero, stable flat-spin conditions may not be possible on

an airplane having the mass primarily distributed along the wings. The

effect of moving ailerons with the spin or the effect of applying a

positive pitching moment producing recovery for contemporary fighter
designs will be greatest for large negative values of (yawing-

Cn_

moment coefficient due to sideslip). In addition, for a certain critical

value of positive Cn_ , the rolling moment applied by moving ailerons

with the spin or the application of a positive pitching moment will have

no effect on reducing the spin rate.

INTRODUCTION

Flat spins of airplanes have become more prevalent than in the past,

along with the trends toward lengthened fuselage forebodles, increased

relative distribution of mass in the fuselage, and low-span wings.

Research results, in general, have indicated the important effects of

such factors as mass distribution and fuselage-nose cross-sectional

shape on the overall stability of a potential spinning motion in deter-

mining the nature of spins achieved for current configurations.
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As regards the effect of fuselage-ncse cross-sectional shape, results
of investigations of dynamic models in the Langley 20-foot free-spinning
tunnel and of static tests in the Langley 300-MPH7- by lO-foot tunnel
(refs. i and 2) have indicated that certain fuselage cross-sectional
shapes can provide propelling momentsat flat-spin attitudes which might
makean airplane have an uncontrollable flat spin with a high rotational
rate. Spin-model tests have also shown, however, that, for certain models
of contemporary fighters which had propelling noses, the flat spin was
not a stable condition but that the motion of the model appeared to be
oscillatorily divergent in roll. This oscillatory roll divergence, when
it occurs, generally causes the spin rate of the model to decrease and
the model either ceases to spin or assumesa steeper spin attitude with
a slower rotational rate. The mass distribution of models for which
this motion has been observed is such that most of the mass is extended
along the fuselage (the momentof inertia about the wing axis Iy is
high) and the wings are relatively light (the momentof inertia about
the fuselage axis IX is low). From the results of the aforementioned
spln-model tests, it is considered desirable that a given airplane be
unstable in the flat-spln region and that the aerodynamic or mass char-
acteristics should be arranged so that there is no possibility of a
stable flat spin.

Accordingly, an analytical investigation was undertaken to determine
how a flat-spln condition, on a specific design, would be influenced by
stability characteristics. This problem is analyzed herein by utilizing
only the linearized pitch, roll, and yaw equations of motion. This
approach seemsreasonable inasmuch as model force-test data showlittle
change in the aerodynamic forces for small sideslip angles and for varia-
tions in angle of attack in the flat-spin region. Also, as stated in
reference 3, the recovery motion of the airplane appears to be affected
primarily by the action of the momentsrather than of the forces. The
effects of applying various momentsin a _lat spin have been examined.

SYMBOLS

The body system of axes is used. This system of axes, related
angles, and positive directions of corres?onding forces and momentsare
illustrated in figure 1. The symbols are defined as follows:

C_ rolling-moment coefficient,
Mx
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Cm pitching-moment coefficient,
My

V2Sb

C n yawing-moment coefficient,
Mz

21_pV2Sb

CI,C2,C5,C4,C5,C 6 coefficients of characteristic equation (eq. (AI9))

M X rolling moment acting about X body axis, ft-lb

My pitching moment acting about Y body axis, ft-lb

M Z yawing moment acting about Z body axis, ft-lb

A difference between two values

t time, sec

S wing area, sq ft

b wing span, ft

P air density, slugs/cu ft

V resultant linear velocity, ft/sec

resultant angular velocity, radians/sec

X roots of characteristic equation

_My ft-lb/radian
Mye - _8

_Z ft-lb/radian
MZ_ - b8

_Mx ft-lb/radian
MX_ - b_

_MX ft-lb-sec/radian
Mxp - ®



Myq-

MZr -

Mzp-

X,Y,Z

p,q,r

r o

Ix, Iy, Iz

¢

G5

_IMX ft-lb-sec/radian

8r

8My ft-lb-sec/radian

8q

_Z ft-lb-sec/radian

8r

_Z ft-lb-sec/radian

longitudinal, lateral, and vertical body axes, respectively

components of angular velocity about X, Y, and Z
axes, respectively, radian_/sec

value of r before disturbarce, radians/sec

body

moments of inertia about X, Y, and Z body axes,

respectively, slug-ft 2

angular displacement of X body axis from horizontal plane

measured in vertical plane, positive when airplane nose

is above horizontal plane, deg or radians

total angular movement of Y body axis from horizontal

plane measured in YZ bod_ ' plane, positive when clockwise

as viewed from rear of airllane (if X body axis is

vertical, _ is measured from a reference position in

horizontal plane), deg or ladians

angle of attack, angle between relative wind V projected

into XZ-plane of symmetry E_nd X body axis, positive when

relative wind comes from b_low XY body plane, deg or

radians

angle of sideslip, angle between relative wind V and

projection of relative wine. on XZ-plane, positive when

relative wind comes from r_ght of plane of symmetry,

deg or radians

horizontal component of total, angular deflection of X body

axis from reference position in horizontal plane, positive

when clockwise as viewed from vertically above airplane,

radians
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F(d)

f(d)

8c
_ z

c_p _ P_b_b
2V

_C n

Cnr -
8r_kb

2V

characteristic (or stability) equation

numerator of equation for motion after various forcing

functions are applied

_C m

Cmq -
_qb

2V

per radian

_C m

Cm8 - 88 per radian

per radian

KA8 constant value in A8 forcing-function equation (eq. (5))

K_ constant value in 2kr forcing-function equation (eq. (4))

D=__d
dt

Subscripts and superscripts:

o initial

t time

A dot over a symbol represents the derivative with respect to time;

for example, _ = d_._.
dt



ME_{ODS AND APPROXIMA'YIONS

Three degrees of freedom were utilized in the present investiga-

tion. The moment equations of motion were used to correspond with these

degrees of freedom and are presented in appendix A as equations (AI)

to (A3). As indicated in these equations, the body axes and principal

axes are assumed to coincide, and the engine gyroscopic moments are

neglected. Also, it was assumed that the airplane was spinning about

its center of gravity in a completely steady spin; that is, _, 4,

and 9 were zero. For these steady spins, the sideslip angle was

assumed to be zero and in order to achieve equilibrium at zero sideslip

a small amount of rolling moment 2_4X was _pplied to oppose the rolling

moment generated by M_p and a small amount of yawing moment 2_ Z to

oppose Mzrr.

The slope of the pitching-moment curve My8 is the same as the

pitching moment plotted against angle of attack. The plot of pitching
moment against 8 would have the form similar to that indicated in

figure 2. In addition, the pitching-moment coefficients were nondimen-

sionalized with respect to the wing span b instead of the chord.

The aerodynamic derivatives used were ._ssumed to be constant for

the flat-spin attitudes assumed, and such derivatives as MXr and MZo

were considered to be small enough to be neglected.

Because of the fundamental assumptions made for the flat-spin con-

dition assumed, which would be near an angl,_ of attack of 90 ° , the fol-

lowing conditions existed:

(a) The rate of descent V remained c,mstant and was the resultant

velocity (determined by equating the drag a_ the spin angle of attack

to the weight of the airplane ).

(b) The rate of yawing r was equal t_ the resultant rotational

rate about the spin axis g or _.

(c) The sideslip angle 6 was the sam,_ as the wing-tilt angle about

the body axis _.

(d) The angle of attack _ was equival.ent to 90 ° + 8, with e

being the inclination of the longitudinal axis of the airplane above

the horizon. (Thus, for very flat spins, _b becomes a small negative

angle.)
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With these conditions, and from expressions of Euler's attitude

angles in terms of the angular velocities about the body axes (appen-

dix A), expressions for p, q, and r in terms of A_, A8, and Zkr

were obtained, with second-order terms being considered small enough

to be neglected, and are presented as equations (A4) to (A6). From

these equations, the equations of motion (eqs. (AI) to (A3)) about the

three body axes are rewritten as equations (AI6) to (AI8). This pro-

cedure is used in order that only three variables describing the motion

remain in the equations of motion, whereas originally there were five.

When equations (AI6) to (AI8) are placed in determinant form, the

characteristic equation (eq. (AI9)) can be determined and is of the form

CID9 + C2D4 + C5D3 + C4D 2 + CsD + C6 = O.

The expression for the various coefficients of the quintic are contained

in appendix A. The conditions necessary for the roots of equation (AI9)

to be stable (according to ref. 4) are that the coefficients of the

equation all be positive and that certain functions of the coefficients

known as Routh's discriminant also be positive. Routh's discriminant

for the quintic equation is as follows:

c2c5 - ClC4 (i)

3- _ - (2)

(3)

An alternate form of Routh's discriminant is given in reference 5.

In order to investigate some of the factors that might affect the sta-

bility of the flat spin, the stability derivatives were varied in the

stability equations for an airplane representative of current fighter

designs as regards mass and dimensions (table I). Various combinations

of derivatives tried are presented in table II, and the coefficients of

the quintic equations for these combinations are shown in table III in

terms of Cn_ and C_. Stability diagrams in the form of Cn_ plotted

against C_ are given in figures 3 to 9. By following the usual pro-

cedures in stability-analysis work, the constant term in the characteris-

tic equation (the coefficient C6) equated to zero is plotted as the

divergence boundary (where one or more of the real roots becomes posi-

tive); also, the limiting condition of the three forms of Routh's
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discriminant, shown in equation (3), equate6 to zero is plotted as the

oscillatory divergent boundary (real root negative, but a pair of the

complex roots positive for all cases investigated). When the constant

term in the quintlc (the coefficient C6) becomes negative, the motion

is divergent; and when the limiting form of Routh's discriminant becomes

negative, the motion has oscillatory instability.

The technique utilized in the solution of motions after application

of forcing functions is explained in appendix A.

RESULTS AND DISCUSSION

Stability Diagrsm_s

Cases A and B were computed to show the effect of different rota-

tional rates on the stability boundaries. The rates chosen for cases A

and B are similar to those that could be obtained in flat spins, where

the rate chosen for case A (rO = 1.9 radians/sec) would be somewhat slower

than the average spin and the rate chosen fcr case B (r O = 3.14 radians/se_

\ /

would be about normal. For these two cases_ plotted as figures 5 and 4

respectively, the damping in roll C_p was chosen as a reasonable value

for a swept-wing airplane based on the oscillation tests presented in ref-

erence 6. From previous experience and from oscillation tests presented

in reference 6, the values chosen for Cmq , Cm8, and Cnr are considered

to be within the range obtainable, on such a configuration, in the flat-

spin region. Figures 3 and 4 indicate the following for cases A and B:

For the slower spin rate (case A) the airplane has oscillatory insta-

bility for a range of small negative values of C z and for all positive

values of C_," also, for all positive values of CZ_ larger than approxi-

mately 0.05, the motion is divergent. For t_e faster spin rate (case B),

both instability boundaries are moved farther into the positive CZ_

range. In both instances the instability regions are primarily functions

of C_ • This would seem logical inasmuch a3 IZ is about i0 times as

large as IX for the airplane considered. (See table I.) Cases A and B

in figures 3 and 4, respectively, show, then, that an increase in the

rotational rate could make an airplane havin_ a negative value of CZ_

near zero change from a condition for which the flat spin would be



unstable to one in which a stable flat spin would be obtained. This
effect on the spin stability of increasing the rotational rate has also
been observed on dynamic models tested in the Langley 20-foot free-
spinning tunnel.

Cases C and D when comparedwith cases A and B show the effect of

a very small negative value of C_p (-0.01) on the stability boundaries.
For the slower rotational rate (case C, fig. 5), the region of oscillatory
instability includes most of the negative CZ_ range, whereas the diver-

gence boundary is relatively unaffected by the change in CZp. Doubling
the rotational rate (case D, fig. 6) mademotions for given values of
negative C_ stable, whereas they were unstable for case C.

Cases E to G (table III) were investigated to determine what effect
a small positive value of C_p (0.025) might have on the stability of the

spin. The original values assumedfor Cmq and Cnr lead to a stability
equation which indicated, by inspection, that the system would be unstable.
(The C2 coefficient in the stability equation (eq. (A21), which contains
the damping terms was negative.) Accordingly, larger negative values for
Cmq and Cr_ were assumed. The stability plots for cases E to G are
presented as figures 7, 8, and 9, respectively, and indicate that insta-
bility generally exists for the whole region plotted. As noted by com-
paring case E with case F, doubling the spin rate r o and doubling the
damping in yaw Cnr caused an extremely small region of stability to
occur where originally no stability existed. Flattening the slope of the
pitchlng-moment curve (decreasing Cm8) had little effect on the stability
region obtained for the higher rotational rate. (Comparecases F and G
in figs. 8 and 9, respectively.)

On the basis of the results discussed so far, it appears that, for
an airplane that is loaded predominantly along the fuselage (as in the
present case), a positive value of CZ_ in the high-angle-of-attack
range will tend to prevent stable flat-spinning conditions. For such a
design, it would be expected that the oscillatory instabilities indicated
for cases A to G would be evidenced as roll oscillations since the axis
of the least inertia is the roll axis.

In order to show the effects of massdistribution on the stability
of the flat spin, a case (case H) similar to case B was computedexcept
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that the momentsof inertia about the X- and Y-axes were interchanged.
Comparison of cases B and H indicates that, although stability existed
for negative values of CZ_ when the masswas distributed along the
fuselage (case B), oscillatory instability is obtained for the whole

when the masswas dis-
range of positive and negative values of _Z_
tributed along the wings. Noboundaries are shown in this case (case H)
because they fell outside the chosen range of CZ . This latter condi-

tion is undoubtedly attributable to the fact that damping in pitch Cmq
was zero. It is probably safe to say that the oscillatory instabilities
that exist for case H are pitching oscillations, inasmuch as the axis
of the least inertia is the pitch axis. _pin-model tests have also shown
that for models loaded predominantly alon_ the wings, the motion is char-
acterized by pitching oscillations. One conclusion that maybe drawn
from case H is that, for a configuration _aving its masspredominantly
along the wings, a value of Cnr of not _ess than approximately -0.I0,
and very little damping in pitch, stable _lat-spin conditions will prob-
ably not be obtainable at the flat-spin a_titudes.

ComputedMDtions Due to Applicatior of a Forcing Function

Although the limiting assumptions in deriving equations (A26), (A27),
and (A28) are such that computation of th_ motion, after the application
of any given disturbance, applies only for small changes from the initial-
spin equilibrium position, it was felt th_.t the trends indicated would
be in the proper sense; therefore, severalL computations were made.
Because of the limitations of this method the time scale has been kept
downto 20 seconds.

It appears that the most effective w_y to influence the spin and to
bring about recovery (according to refs. _. and 7) is to obtain a yawing
momentby applying a momentabout an axis which offers the least resist-
ance to a change in angular velocity (lea_;t momentof inertia). Accord-
ingly, computedmotions were madefor app,_led rolling momentsonly.
These computations were arbitrarily madefor cases A, B, and E and are
presented in appendix B.

majority of the cases = 1.9 radi_ns/sec). The motions computed
The computed_oply to case A in table II and

figure 3 (C_p = -0.i0 and r o
\ I

for the stable case (point i in fig. 3) s_ow that with Cn_ = 0.i0 and
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AMX
C_ = -0.15 when the incremental rolling moment IX originally

applied to balance CZp was removed, the following occurred: The spin
rate decreased slightly, 0 becameslightly more negative (_ decreased
slightly), and _ w_s slightly changed. (See fig. i0.) It should be

noted that removal of the incremental rolling moment AMx in this case
IX

is equivalent to applying ailerons slightly against the spin, and it
appeared unusual that ailerons against the spin would slow downthe spin
rate or decrease the angle of attack even slightly for the type of mass
loading considered. The motion computedfor the stable point 2 in fig-
ure 3 where Cn_ was taken as -0.i0 with CZ_ still equivalent to -0.15
showedthat, for the sametype of forcing function used for point i (that
is, the equivalent of a small aileron deflection against the spin), the
spin rate now accelerated somewhat, the angle of attack increased
slightly (Ae slightly positive), and the angle of sideslip became
slightly negative. Further, whena rolling-moment coefficient of 0.01,
which was assumedequivalent to moving ailerons full with the spin, was
applied for point 2, the combined effects of CZp and ailerons full
with the spin indicated a slowing of the spin rate

(d_ = -0.041 radian/sec), a decrease in the angle of attack

_-_ - -0.002 radian/sec , and positive angle of sideslip (_ _ 2.9°).

(See fig. 11). These effects obtained for point 2 where Cn_ was

equivalent to -0.10 are consistent with the effects that would usually

be anticipated; whereas the effects obtained for point i where Cn_

was equivalent to 0.i0 are inconsistent with the effects that would

usually be anticipated.

These differences can be explained on the basis of physical con-

siderations and also from an examination of equations (AI), (A2),

and (A3). Physically, it would be anticipated that, for the type of

loading considered, the cross-couple inertia yawing moment (IX - Iy) pq

would act in a sense that would slow down the rotational rate when

ailerons are placed with the spin (refs. 6 and 7) or when a positive

rolling moment is applied. Similarly, a negative rolling moment

(ailerons against the spin) acts in an opposite manner. In addition,

if the spin rate slows down, the angle of attack would be expected to

decrease because the amount of positive pitching moment supplied by

the inertia pitching-moment term (I Z - Ix)Pr would be decreased.
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Thus, based on inertia considerations alone, it would be anticipated
that a positive rolling moment(ailerons with the spin) would slow down

the spin rate and decrease the angle of attack, with the converse holding

true for a negative rolling moment. On the other hand, when the aero-

dynamic yawing-moment characteristics are considered, it would appear

that, if a spinning airplane had a positive value of Cn_ , movement of

ailerons with the spin would cause the inner wing to drop (right wing

in a right spin) and permit the airplane to acquire a certain amount of

positive sideslip. This combination of positive sideslip combined with

positive values of Cn_ would cause the airplane to yaw into the spin,

that is, to increase the rotational rate. This effect, then, is Just

opposite to the inertia yawing moment produced by the ailerons. Thus,

as Cn_ increases from zero in the positive direction, there would

apparently be some value of positive Cn_ where the aerodynamic and

inertia effects would be nullified; and for further increases in posi-

tive Cn_ , the effects of the ailerons in _roducing recovery would be

reversed.

Examination of the stability equation (eq. (AI9)) and equations (A26),

(A27), and (A28) for the roll forcing funclion enables the computation

of this point of reversal for the cases considered. These equations

indicate that, for the stable-spin cases considered, the most important

terms are the coefficients C5 and C6 of the stability equation

(eq. (AI9)) and the constant term in the roll forcing equation. The

coefficients C5 and C6 are, of course, both positive for the stable

cases; and since examination of the roots indicates that the only real

root is small, _, the equations for Ar _.nd Ae (eqs. (A26) and (A27),

respectively) for a stable point when a po_itive C Z is applied can be

simplified roughly to

Kg_r iIx - IY MZ_.I KAr !Ix Iz-IY ro28 o MZ__I ekt
2_r = YZ r°2e° Iz / _ " Iz/ (4)

C6 kC 5

- Iy _IK_e Iz ro % o -
: - (5)

hc5c6

IIx - IyKAe _Z ro2e o
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where KZIr is a negative number, KA8 is a positive number, and 8o,

according to the original assumption, is a small negative angle. Thus,

the value of MZ_ .ior Cn_ )_for which application of a rolling moment

will have no effect on the yawing rate is computed by equating

MZ_ - oIX - Iy

Iz r°2_° IZ
(6)

For case A, this value of Cn_ is 0.095. It is obviously desirable,

then, that for the application of a positive rolling moment (ailerons with

the spin) to have the greatest effect in producing recovery for the type

of loading considered (mass predominantly in the fuselage), Cn_ should
/

be a large negative number, lit should be noted that, for a loading in

which the mass is extended primarily along the wings, Cn_ should be

positive.) It should be pointed out that these values of Cn_ are

favorable for instability, which is good in the spin but is not good for

stability in normal flight. Examination of the roll equations (eqs. (A26),

(A27), and (A28)) indicates that the wing will always roll in such a

manner that the sideslip angle acquired is in the same sense as the

rolling moment (that is, a positive CZ leads to a positive _). The

value of Cn_ Just computed for which the reversal of aileron effect

occurs also holds in the oscillatory instability region. It is inter-

esting to note that incremental negative values of Cn_ due to the

fuselage would, in general, be expected when a fuselage nose is pro-

viding a damping moment in the spin; whereas positive incremental values

of Cn_ would probably be present for cases in which the nose is pro-

viding a propelling moment.

Motions for points 3 and 4 in the oscillatory instability and

divergent regions, respectively, for case A (fig. 5) showed that, fbr

the point in the oscillatory instability region (point 3), fir would

be exceedingly high before any appreciable instability in _ would be

obvious; whereas the point chosen in the divergent region (point 4)

diverged about all three axes almost immediately. (See figs. 12 and 13.)

In order to note any divergence in _ for the oscillatory instability

region, Cn_ should be close to 0.055, the point where application of

a rolling moment would have no effect on the yawing rate r or on the
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angle of attack (90° + e). Although the roots were not computedfor this
case, it is fairly obvious that there would be little change in the roots
provided C_ remained fixed (that is, point 3 increased positively to

Cn_ = 0.055 in fig. 3). Then, for a point in the oscillatory instability
J

region of case A (fig. 3) where CZ_ = 0 and Cn_ = 0.055, the motion for

the case wherein ailerons are placed full against the spin _(CZp acting

and C_ = -0.011 would be approximately as shown in figure 14. As is
!

shown, this is a very slow divergence but motions of this nature are often

seen in the Langley 20-foot free-spinning tunnel.

A few computations were made for comp_.rison of the motions for the

( = Cn_ = )various points numbered i CZ_ -0.15 and 0.i for cases A, B,

and E and show the effect of increasing the rotational rate and of changing

from a stabilizing value (-0.i0) to a destabilizing one (0.025). The
C_p

most obvious effect for the increased rotation rate is that the response

to a rolling moment is in the sense anticipated in that a positive rolling

moment decreases the yawing rate. (See fig. 15.) This happens because

the value of Cn_ for which the effectivm_ess of the ailerons reverses

is increased positively from 0.055 for the slower rate of rotation to

0.155 for the present rate of rotation. _e motion for point i of case E

is now unstable (whereas a stable conditioll existed for case A), and the

motions plotted in figure 16 show that the instability in sideslip is

obvious in a short period of time.

The effect of applying a positive pit._hing moment is as follows:

The change in yawing rate fir is decrease_[ if MXp is negative unless

IX - Iy _ MZ_

Cn_ becomes sufficiently positive that ro2eo becomes
IZ IZ

negative, _ becomes positive provided MII_ is negative, and A0 is

dependent upon various factors and will be positive or negative depending

upon whether the following expression is p>sitive or negative:

Ir°2M__Zr_Y IxIZ> + MZr MX_
IZ IZ IX

MX_x - Iy

r°20°2 IX \ IZ ])
(7)

Equations (A52) to (A34) show the application of a pitching moment.
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The effect of applying a negative yawing moment is as follows: The

change in yawing rate Ar is usually decreased and a negative yawing

moment has the greatest effect in reducing Lkr if MX_ and MXp are

large negative values, _ generally becomes negative if MXp is nega-

tive, and A_ becomes more negative (_ decreases) unless _ becomes

IX

Iy - IZ 2

large enough positively to exceed r o (See eqs. (A29) to (A31)
IX

for application of a yawing moment.)

Thus_ application of a positive pitching moment appears to produce

an effect similar to the application of a positive rolling moment as

regards its effect on reducing the spin rate_ and a negative yawing moment

also reduces the spin rate. These effects are consistent with effects

observed from experimental spin research in the l_ngley 20-foot free-

spinning tunnel.

A few calculations have been made on a high-speed digital computer,

utilizing six-degree-of-freedom equations of motion_ in an attempt to

check the validity of the results presented in this paper. Although

some limiting assumptions had to be _de in carrying out the six-degree-

of-freedom studies, the results are considered to indicate the qualitative

validity of the three-degree-of-freedom results in this paper.

CONCLUSIONS

The following conclusions are based on linearized equations of motion

utilizing only the three moment equations and assuming only flat-spin con-
ditions:

i. Contemporary airplane designs (with the moment of inertia about

the wing axis Iy considerably greater than the moment of inertia about

the fuselage axis IX) having positive values of rolling-moment coeffi-

cient due to rolling or rolling-moment coefficient due to sideslip will

probably not have a stable spin near an angle of attack of 90 ° . In addi-

tion_ high rotational rates have a stabilizing effect on flat spins, an

effect which has been observed during spin-model tests in the Langley

20-foot free-spinning tunnel.

2. If the damping in pitch in flat-spin attitudes is zero_ it would '

not be possible to obtain stable flat spins if the moments of inertia of
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the airplane are such that the mass is primarily distributed along the

wings, that is, with IX considerably greater than Iy (opposite to

the mass distribution of contemporary fighter designs).

3. The effect of moving ailerons with the spin in producing

recovery for contemporary fighter designs will be greatest for large

negative values of yawing-moment coefficient due to sideslip Cn_ , and

for a certain critical value of positive Ca_ the rolling moment applied

by moving ailerons with the spin will have ao effect on reducing the spin

rate. These effects also apply to an application of a positive pitching

moment.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., February 25_ 1959.
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APPENDIX A

DERIVATIONS OF EQUATIONS

Equations for Determining Stability Boundary

The equations of motion corresponding to the rolling, pitching, and

yawing degrees of freedom are, respectively,

Roll : IX_ = (Iy - Iz)qr + MX_ + M_p + AM x (AI)

Pitch = Iy{ = (I Z - Ix)Dr + Mye8 + Myqq + My, o (A2)

Yaw : IZ9 = (IX - Iy)pq + Mzrr + MZ_ + AM z (A31

Expressing the angular velocities about the body axes in terms of

the (Euler's) attitude angles gives

p: - sin 

q = 6 cos¢ + _ cose sin¢

r : -@ sin¢ + _ cos0 cos¢

(See appendix A in ref. 8_ for example.)

were applied:

8 = 8o+A8

_ = ro +L_r

sin L = Y-

cos / = i

Rewriting equations (Ad)_ (AS)_ and (A6) with the aforementioned

assumptions included and with second-order terms neglected gives,

re spectively

(A4)

(AS)

(A6)

The following assumptions
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p = f_ - roe o - ro A9 - e

q = Ae + ro _._

r =ro+Ar

Ar
o

(A7)

(As)

(A9)

which can be expressed as

= A_ - ro A6 - eo

= A6"+ ro L_

_=z_

(AI0)

(All)

(AI2)

or as

pr = r o AI_ - 2roe o Ar - 1'o2Ae - ro2eo (AI3)

pq = -roe o A@ - r(_20o A_ (A14)

qr = r O A8 + rc)2A_ (A15)

Substituting equations (AT) to (A15) into equations (A1) to (A3)

and neglecting second-order terms gives tile three moment equations in

the following form: Roll is given as

IIY -[Z + MX_I_ +
Roll = A_ 2 MXp D ro 2

A0 ro + _ D+ITr +At
eoD + --

Ix

MXp roeo + AMX

IX IX

(A16)



where - -- rob o and _X
IX IX

for the initial steady spin.

cancel each other for balance at

Pitch is given as

Pitch = A_
IZ - IX D Myq roo Iy

+

Ag!D 2 MYq- -D + I IZ - IX
k Iy Iy r°2

+

Ar

I IZ - IX_r°8° Iy F

_ = 0O

My Iz - IX + __ My_ oro28o MY8 8o +

Iy Iy Iy Iy
(A17)

My
where -- is considered to be equivalent to zero for the initial steady

Iy

G O + MY_°_ cancel each other for balance

MY 8
\

Iz IX

spin and -ro2e o Iy + Iy Iy /

for the steady-spin state. Yaw is given as

Yaw =2_81X - Iy I_!IZ ro2eo - + _eIxITZ roSo +_ IzJ

MZr
- r + --

IZ o IZ
(AI8)

MZ r
where -- r o

Iz

steady spin.

and

Iz

cancel each other for balance for the initial
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By placing equations (AI6), (AI7), and (AI8) in determinate form
and solving for the characteristic equation, an equation of the following
form is obtained:

ClD5 + C2D4+ C3D5+ C4D2+ CsD + C6 = 0
(AI9)

where the coefficients of the characteristic equation are given as

C1 = 1

C 2 =

M_ Myq MZr

IX Iy IZ

hh %- _+ - --+ -- + - +

IX IX Iy Iy IZ IX IZ Iy IZ

(A20)

(A2<)

r 28 2/IZ - IX_{ IX

11- (Iy _Iz)(I Z iy.IX)j ro2 _ o o ! IY" ]\ <Iy>

My( MZr + MY8 + MyqMy q MX_ + My8 MXp + MX_ MZr M_ _ MZr MZ_

c4- iy Ix iy ix ix iz ix iy Iz iz Zy iy zz

(A22)

8o +

MZ_ eo - __ ro 2 - __ ro 2

IZ IX IX Iy MZr ro2 ll <IT - IZ_{Iz - I)llIZ - IX "]\ Iy

+

ro2eo 2 MXpl/Iz - IXI{Ix
Ix ",, Iy "]\ IzIY 1

(A23)
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Equations for Solution of Motion J_fter Application of

Various Forcing Functions

In order to solve for the motion after various forcing functions

were applied, the five roots of the characteristic equations were deter-

mined as wore the differential equations for the various forcing func-

tion_;. The solution for any of the motions; Ae, _r, or 2&8 is then

determined from

_(d)
Ae, Ar, or _ " F(d)

where f(d) is the numerator of the equation for the motion after various

forcing functions are applied and F(d) is the characteristic equation.

The forcing functions employed were step inputs for which Heaviside's

exp_nsion could be employed to obtain a solution

f(O) Ii f(_) eXtAe, Z_, or _ : F--UO-7 + XF'(k)

where the various values of X are the five roots of the characteristic

equation and F' indicates the first derivative of the characteristic

equation. In order to solve this equation for the complex roots, the

method explained in reference 9 was employed. The equations for the

motion after application of various forcing functions and the removal

of the 2_X term originally inserted into equation (AI6) for balance at

IX

zero sideslip are as follows:

MR, [/__ ix - Iy Iz - Ix
Ar = -- roe o _ro2eo

D2+t D
Iy IZ

MYel(Ix - IY - MI-_II _(ld)_ _Z r°26°

+

(A26)
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Ae -

Ixroeoo _ 7 + Iy

Myq MZr IX _ Iy IZ - Ix
2ro38o2

_y Iz Iz Iy
ro

- -- r
o

+

MZ_ IZ - Iyj] i

+ 2r°e° Iz Iy "_!]F(d)

(A27)

M%
IX [  D2+(izlx- -- r°e° D3÷ + Iz/ Iy

Ix - Iy Iz -Ix)2r°2e°2 IZ _ D +

MY e
ro 2 +

Iy

MZr My_

IZ Iy

_z___ _ __ _Iz\ _ ro

+

(A28)

Application of a rollin_ moment.- After the application of a rolling

moment the equations for fkr, A0, and A_ are the same as those given

in equations (A26), (A27), and (A28), respectively, except that the

MXp AM X

IT roe o term is replaced by IX

Application of a yawin 6 moment.- After the application of a yawing

moment the equations for fkr, Ae, and f48 are given, respectively, as
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_= 4_T+__ / + _Y
MX_ MY e

IX Iy
+

MY8 ro2+ Mxp _q
Iy IX Iy

_?_ _/%q _Y__Y-_z
ro 2 IX/D + ro2 IX IT + Iy IX ],2o

Iy - IZ IZ - IX

Ix Iy

MX_ IZ - Ix 2 MY8 MX_ 1

IX Iy r° + Iy Ix|F--_
J

(A29)

MzIA8 = Iz 8or o -i _z-_x%______%+ D

I x

I Z - Iz %_x _°2+ Ix)Iy

_q%il
Iy IX_ F(d )

+

(A30)

.  M o21=FzeO - _ +
IZ - IX 2

Iy _o
- 2

IZ - IX Iy - IZ

Iy Ix

My81 D MXp IZ - IX M>p My_ 1

IyI + IT _y "_°2+ i_:_yjF(a)

2
r +
o

(A31)
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Application of a pitchin_ moment.- After the application of a

pitching moment, the equations for 2kr, _8, and A_ are given, respec-

tively, as

Ar = Iy r°e° IZ " D3 r MXPIxiIY_ID2
+ o8o Ix IZ / +

I MX_ Ix - Iy°0° Ix _Z

+ ro
ro38o Ig IZ \

+
Iy- I_ M_ ix - Iy

_X _I D + ro38 o IX YZ

r° IT IX F(d)

(A52)

A8 = i__ 3 - {Mxp+\Ix
o2 Iy Iz+ MZr X Ix Ix IZ Ix

8o2ro2 1x - Iy

Iz

+
MX 6

MZ6 8 D + MZ r Iy - IZ MZ r

IT ro2 iz IX + iZ IX

--i

M_ IX _ Iy M_ MZ_I 1
ro2e 02

Ix Iz + 80 ix IZ_

(A33)

f-

My _ Iy - Iz

_ = Iy r°_l + IX

Ix - Iy eo2hD2
% }

+

Mz(
-r 1

IZ

Iy - Iz Mx_
IZ F(d)

(A34)
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APPENDIX B

EQUATIONS FOR MOTION OBTAINED WFEN VARIOUS FORCING

FUNCTIONS ARE APPLIED IN ROLL

Case A

In the determination of points i to 4 in figure 3 for case A, the

AM X
term is removed from equation (AI6) w_ ich then allows My to act.

Ix

Thus, fkr, Oe, and h a can be expressed, respectively, as follows:

Point i in figure 3--

Ar = -0.03903 + 0.039064e-O'O267t + O.O00196e-O'O1718tcos(_.696t +

6.1665) + O.O000514e-O'lSO45tcos(3-32_t + 3.6249)

_e = -0.00252 + 0.002521e -0"0267t + O-OO04_-O'O1718tcos(l-696t + 3.09) +

O.OOO0156e-O'15045tcos(3.328t + 2.904,

fk8 : -0.005466 + 0.010736e -O'O267t + O.OO_28e-O'O1718tcos(l-696t +

4.606) + O.O01126e-O'15045tcos(3.328t + 4.647)

Point 2 in figure 3.-

Ar = 0.128656 - 0.128796e -0"02925t

A8 = 0.00946 - 0.00947e "0"02925t

A_ = -0.004996 - O.OO02Tle -O'02925t

It should be noted that the oscillatory terms were not computed for this

case in that they were assumed to be of negligible importance for the

time range considered_
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If C I = 0.01 is applied, the result is

Zkr = -1.3291 + 1.3305e -0"02925t

A0 = -0.09772 + 0.0978e -0"02925t

A_ : 0.05i648 + 0.002769e -0"02925t

Point 3 in figure 3--

Ar = 0.5764 - 0.5878e -0"035t + 0.0058e-0"17tcos(l-32t + 1.37) +

0.00092e0"0125tcos(2.05t + 0.729)

A6 = 0.0424 - 0.0432e -0"035t + 0.00026e-0"lTteos(l.32t + 0.99) +

0.0001e0"0125tcos(2.05t + 1.84)

A_ = -0.02346 - 0.005e -0"035t + 0.029e-0"17tcos(l-52t + 6.18) +

0.0004e0"0125tcos(2.05t + 5.28)

If C I = -0.01 is applied, A_ can be written as

g_ = -0.2438 - 0.0558e -0"055t + 0-1122e-0"17tcos(l.32t + 6.19) +

0.0027e0"0125tcos(2.05t + 5.14)

Point 4 in fife 3"-

Ar = -0.09515 + 0.00028e 2"798t - 0-00022e-3"13t
-0.03t

+ 0.05013e +

0.00002e0'005tcos(2.043t + 4.94)
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A8 = -0.00405 + 0.00007 e2"798t - 0.OO006_-5"15t + O.O0568e-O.OSt +

O.O0015eO'OO5tcos(2.043t + 1.621)

2_3 = 0.00593 - 0.O0509e 2"798t - 0.O0275e -3"15t + O.00044e -O'05t +

O.OOOO3eO'OO5tcos(2.043t + 5.554)

If C Z = -0.01 is applied, A_ can b,: written as

Z_ = -0.05651 + O.O02166e-O'O267t +O.0548e-O'O1718tco s(l.696t + 6.19) +

O. O5876e-0" 15045t cos (3. 328t + 6.26)

Case B - Point i in i_igure 4

In the determination of point i in figure 4 for case B, the --
IX

term is removed from equation (AI6) to allow MXp to act. Thus,

fir = 0.0597 - 0.O596e -0"0273t + O.OO00274-_-O'O365tcos(3.153t + 4.41) +

O. 000228e-0" 225tco s (3.65t + i.60)

Ae = 0.003 - 0.0029e -0"0273t + O.O0092e-C'O563tcos(3.155t + 1.18) +

O.O0078e-O'225tcos(3.65t + 0.78)

A_ = -0.0066 + 0.000056e -0"0273t + O.O00_e-O'O563tcos(3.133t + 2.65) +

O.OO55e-O'225tcos(3.65t + 6.07)

If C_ = 0.01 is applied, fir, Ae, and A_ (with oscillatory

terms being of small importance in determining Ae and final trim _)

are given, respectively, as
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Zkr = -0.3782 + 0.3776e -0"0273t + O.O01648e-O'O363tcos(3.133t + 1.27) +

O.O01442e-O'225tcos(3.65t + 4.73)

Ae = -0.016 + O.O16e -0"0273t

A_ = 0.035 + O.OO03e-O'O273t

Case E - Point i in Figure 7

In the determination of point i in figure 7 for case E, the

term is removed from equation (AI6) to allow MX to act. Thus,

Ar = 0.002707 - 0.002703e -0"092t + 0.O000203e-O'OO3tcos(2.018t + 4.71) +

O.O00092eO'039tcos(3.15t + 1.62)

A8 = 0.000204 - 0.000208e -0"092t + O.O001e-O'OO3tcos(2.018t + 1.53) +

0.O00067eO'O39tcos(3.15t + 4.71)

A_ = 0.00131 - 0.000055e -0"092t + O.O00049e-O'OO3tcos(2.018t + 0.04) +

O.O0151eO'O39tcos(3.15t + 3.17)

If C Z = -0.01 is applied, the result is

Zkr = -0.111864 + 0.ii1732e -0"092t + O.O0084e-O'OO3tcos(2.018t + 1.57) +

O.O038eO'O39tcos(3.15t + 4.76)
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A@ = -0.00839 + 0.00856e -0"092t + 0.00472e-0"003tcos(2.018t + 4.67) +

0.00276e0"039tcos(3.15t + 1.67)

Zk_ = -0.054337 + 0.002268e -0"092t + 0.00202e-0"003tcos(2.018t + 3.18) +

0.054256e0"039tcos(3.15t + 0.01)
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TABLEI.- MASSANDDIMENSIONALCHARACTERISTICSOFAIRPLANE

IX, slug-ft 2 ......................... i0,000
2

Iy, slug-ft ......................... ii0,000

IZ, slug-ft 2 ......................... 115,000

S, sq ft ........................... 585.33

b, ft ........................... 35.7

Test altitude, ft ...................... 50,O00
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TAELE IIl.- COEFFICIENTS OF CHARACTEBISTIC EQUATION f'0H

THE CASES IhWESTIGATED (SEE i'ABLE II)

Coefficient

C 1

C 2

c3

c4

c5

c6

C[t:;e A

0.35

0.371Cn_ - 530Z_ + 6.022

0.125Cn_ - 1.484C_ + 1.620

0.260Cn_ - 219.?DCz_ + 7.914

-0.359Cn_ - 6.157Cz_ + 0.229

C[[se B

0.59

0.371Cn_ - 55Ci_ + 19.506

C[_:o O

0.061

O.y(iCn_ - DSCz_ + 6.02)

0.125Cn$ - 1.,_84C_ + 3.813

0.260Cn_ - 540.8260_ + 50.356

-l.150Cn_ - 14.875Cg_ + 1.468

O.Ol2Cn_ - 1.484Cz_ + 0.30i_

O.S60Cn_ - 219,95C_ + 7.501

-O.032Cnp - 5.247C,,!8 + 0.2]2

Coefficient

C 1

C 2

c3

c4

c5

C 6

Case D

0.061

• O.371Cn_ - 93Cz_ + 22.090

O.Ol2Cn_ - 1.48_C_ + 1.112

0.260Cn_ - 702.25C_ + 12.554

-O.iD9Cn_ - 20.67CL_ + 0.357

Case E

0.02

0.371Cn_ - 55Cz_ - 6.006

Case F

o.ii3

0.371Cn_ - 53C_ + 22.07[_

-O.02()Cn_ - 5.35_Cg _ + 0.239

0.265Cn_ - 220.044C_ + 7.447

O.O85Cnb - 20.23C_ + 0.685

-0.028Cn_ - i0.282C_ + 2.980

O.265Cn_ - 774.94C_ + i05.31_

0.408Cn_ - 142.505C_ + 19.516

Coefficient Case G Case H

C 1 1 1

C 2 0.115 0.057

C_ O.}71Cn_ - 5_Cz_ + 21.738 O. ]84Cn_ - 4.818Cz_ + 21.957

C 4 -0.028Cn_ - I0.282Cz_ + 2.944 O. )llCn_ - 0.134C_ + 1.115

C 5 O.i52Cn_ - 757.716C_ + iO2.91_ 4.5 _�Cn_ - 59.218C_ + 116.368

C 6 C_4_9Cn_ - 138.99CI_ + 18.861 O. )28Cn_ - 1.656Cz_ + 3-555
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x8f _ ___
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(a) ¢ and ¢ : O.

Projection of Y
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Projection o_ M

(b) o _d ¢:0.

Y

Z

(c) Q and _ = O.

Figure i.- Body system of axes and related angles.
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80 ,

_90 °

trim spin condition

(I Z - IX)pr

.+8

Figure 2.- Sketch indicating relative n_ture of various terms in

pitching-moment equation.
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